

Coherent Neutrino-Nucleus Scattering

Adam Bernstein Advanced Detectors Group Leader Physics Division

> Lawrence Livermore National Laboratory

6th International Workshop on Low Energy Neutrino Physics Nov 2011

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Talk Outline

- 1. Coherent scatter and dark matter detection
- 2. Dual-phase ionization detectors
- 3. The dual phase test-bed at LLNL
- 4. Neutron and gamma beam measurements of ionization 'quenching'

Coherent Scatter Processes

Both processes satisfy the coherence condition:

$$/ 3 R_{nucleus}$$

Coherent Neutrino Scattering (CNS)

A neutrino elastically scatters on a nucleus via Z0 exchange with all nucleons

- flavor blind, no threshold
- predicted by the SM, long-sought
- high cross-section:

$$\sigma_{\rm cs} \simeq \frac{G^2 N^2}{4\pi} E_{\nu}^2 \simeq 0.42 \times 10^{-44} N^2 \left(\frac{E_{\nu}}{\rm MeV}\right)^2 {\rm cm}^2$$

But low recoil energy:

 $\langle E_r \rangle = 716 \text{ eV} \frac{(E_\nu/\text{MeV})^2}{\textbf{(A)}}$

Sources of < 50 MeV neutrinos

- Reactors
- spallation sources
- supernovae

 $ar{
u} + \mathbf{Ar}
ightarrow ar{
u} + \mathbf{Ar}$

• the Sun

stopped pion sources are a useful source of neutrinos for coherent scatter

Slide courtesy Kate Scholberg

Refs: hep-ex/0511042, arXiv:0910.1989, arXiv:1103.4894

1-10 MeV reactor antineutrinos also satisfy the coherence condition

One approach to CNS discovery/detection: dual phase noble liquid detectors

- Well known technology, proven in Dark Matter experiments
- Measures primary scintillation (SI) and secondary scintillation (S2, charge)
- Good electron drift properties
- Large mass
- mm 3-D signal localization *
- Discrimination between nuclear and eletromagnetic recoils *

Coherent Nuclear Scatter Signals in a Dual-Phase Argon Detector

* Not easy to achieve for the CNS process

Dark Matter and Coherent Scatter: The Devil and the Deep Blue Sea

Detector feature	Coherent scatter	Dark Matter
Nuclear recoil energy threshold	~1-2 keV	~5-10 keV nuclear recoil
Primary (S1) and secondary (S2, ionization induced) scintillation	Little or no primary scintillation light	Charge and light together provide discrimination and fiducialization
Overburden	10 meters	~1000 mwe overburden
Events per kg and day	~1-10	~1/100 th (or ZERO)
Mass	10-20 kg	100 kg minimum price of admission
Purity	Medium 0.2-0.5 meter drift length	High purity: 1-2 meter drift length
Source characteristics	Reactor (and beam) neutrino sources can be turned off	Source is either nonexistent or can't be switched off

The recoil energy spectrum of reactor antineutrinos in argon and xenon

$$\frac{dS}{d(\cos q)} \gg \frac{G^2}{8\rho} N^2 E^2 (1 + \cos q)$$

$$\langle E_r \rangle = 716 e V \frac{(E_v / MeV)^2}{A}$$
1/A and N compete

Our assertion based on modeling: for reactor antineutrinos Argon (Z-20) gives the best balance between high cross section and detectable energy

The induced signal in a dual-phase detectors

• In general nuclear recoils yield less ionization than electromagnatic recoils $\longrightarrow q(E_r)$

nuclear ionization quench factor

Manzur et al, Phys. Rev. C 81 (2010)

 $q(E_r) = \frac{N_{ion}(E_r, \text{nucleus})}{N_{ion}(E_r, \text{electron})}$

Argon (and Xenon) low energy electron yield must both be measured - our experimental program Data in xenon still allow for a wide range of ionization yields at 1 keV Akimov, arxiv 0903.4821

Single liquid electrons - sensitivity and background

Signal: Isolated single liquid electrons must be countable in order to detect CNS ZEPLIN-III (and Xenon-10) have both demonstrated this

ZEPLIN-III data showing the x-y reconstructed positions of single electron events in a 12 kg dual phase xenon detector **Background:**

•5 Hz spontaneous rates from single electron emission in 10 kg detectors

•Possible sources: grid emission, accumulation of surface charge..

•Single electron events will likely have to be removed from the data sample to suppress this background

Santos – arxiv 1110.3056v1

Time Projection breaks down at low energy: recover z position by diffusion

Without a starting flash of light, we need a way to reconstruct vertical position

Answer: measure the transverse width of the electron cloud

(but it won't work for one electron...)

P.Sorensen -arXiv:1102.2865

• All process that produce a small number (1-5) Monte Carlo Simulation

 All process that produce a small number (1-5) of primary electrons in the active region:

10 kg Ar, 25 m standoff, 3.4 GWt Signal:

- ightarrow after quenching: 1-10 free e-
- \rightarrow ~170 per day (1 or more liquid e-)

 \rightarrow ~80 per day (2 or more liquid e-)

Breakdown of backgrounds

Background type	counts/ dy/10 kg
Dominant: ³⁹ Ar (sim.; depleted Ar reduces 20x)	1000
External U/Th/K : (sim., after2 cm Pb shield)	~ 100
External neutrons: (sim. @ 20 mwe, after 10 cm borated poly shield):	~ 32
Internal gammas or spontaneous emission single e-: (measured, XENON10):	~ 50 per day @ 3 keVee; but ~1 Hz of single liquid electrons

Small Dual-phase Ar Detector

Experiment Setup

Cryogenic Performance

- Overnight cool-down and liquefaction
- Temperature stability \pm 0.05 K
- Pressure stability ± 1 torr
- Continuous purification of Ar 2-3 times per day

• Sensitive liquid level tilt sensor

Detector Operation with γ **Sources**

- A γ interacts in the active region (e.g. Compton scatter). External high-energy γ 1.
- Both excitation and ionization are produced 2.
- 3. Excitation is detected immediately (S1 light)

- source.
- Gain ~ 4 kV/cm
- Drift ~ 1 kV/cm

Detector Operation with γ**Sources**

- I. A γ interacts in the active region (e.g. Compton scatter)
- 2. Both excitation and ionization are produced
- 3. Excitation is detected immediately (SI light)
- 4. The ionization is drifted in the liquid and transferred in the gas region
- 5. In the gas the electrons induce secondary scintillation (S2 light)

Detector Operation with γ**Sources**

- 2. Both excitation and ionization are produced
- 3. Excitation is detected immediately (S1 light)
- 4. The ionization is drifted in the liquid and transferred in the gas region
- 5. In the gas the electrons induce secondary scintillation (S2 light)
- 6. The scintillation light decays with its characteristic time constant (expected τ =3.2 μ s)

Electron Drift in Liquid

Distribution of electron drift time in liquid

Current electron attenuation length of a few centimeters But with short purification cycle and some outgassing materials

Next steps

- Minor detector modifications (nearly complete)
 - Remove possible contaminating materials, increase recirculation rate
 - Achieve electron drift length of 10 cm
- Commissioning
 - calibration at low-energy electron recoils (³⁷Ar).
 - show sensitivity to single primary electrons
- Measure the Ionization Yield
 - using Neutrons
 - using Nuclear Resonance Fluorescence

Nuclear-Recoil Ionization Yield using Neutrons

- Neutrons produced from 1.93MeV protons on a Li target at CAMS facility at LLNL
- Neutrons interact primarily within the resonance at 80 keV of ⁴⁰Ar

Ar recoils with energy up to ~8 keVr.

GEANT4 and MCNPX Simulations

 \sim

4

റ

۰ oo

5

, 12

- Study signal and backgrounds rates
- Optimize
 - detector position
 - proton energy
 - collimation and shielding

Reconstruct energy across full range, not just an end-point

• 60 hours of beam time awarded by $HI\gamma S$ at Duke Univ.

T. Joshi, NIM A 656 (2011)

Probe sub-keV Nuclear Recoil Energies

- Modify detector
- Add gamma tagging detectors

 Sub-keV recoil energies could be accessed depending on the fluorescence angle and resonance energy (4.8/9.8 MeV)

Conclusions

- Coherent Neutrino Scatter is interesting for basic science and possibly for non-proliferation applications
- Dual-phase noble-element detectors may be suitable for detecting CNS
- Measurement of the ionization yield for nuclear recoils below ~keVr energies is a key element toward the observation of CNS and its use for reactor monitoring

Neutron recoil measurements Gamma-ray fluorescence measurements

- Upon successful deployment of the small prototype, we will develop a larger detector to measure Coherent Scatter at a nuclear power plant.
- Not discussed here: other detection approaches phonon based detection may also be possible

Detector for Reactor Monitoring

- Performed preliminary design study for a 10kg liquid/gas Argon detector
- Stringent technical requirements
 - small footprint
 - movable
 - modular design for installation in hard-to-get locations
 - limited electrical power
 - very limited network access for remote control and operation
 - limited time access for operators
 - no ready access to liquid cryogens
 - − shallow depth \rightarrow shielding
 - safety
 - limited air circulation and no air conditioning
 - harsh environment: dust, humidity, noise, vibrations

Possible location: Tendon Gallery of a PWR

~ 25 m from core

A possible schematic design of the 10-kg dual-phase detector

The eventual deployment site

- To be sited at a nuclear power plant (e.g., the San Onofre Nuclear Generating Station)
- Assuming 100% efficiency in detecting 2 or more primary electrons, we expect ~ 80 events/day (v flux of 6x10¹² cm⁻² s⁻¹)

 \rightarrow first observation ever of CNS !

from nrc.gov

HIYS Experiment

High Intensity Υ-ray Source (HIΥS)

- Located at the Duke Free Electron Laser Laboratory
- γ-Production: Compton backscatter

High Resolution Mode

- Energy resolution ~1%
- ~2 x 10⁵ γ/sec at 4.769 MeV ^a
- 2.79 MHz γ production frequency

Experimental plans

- 60 hours of beam-time awarded by HIYS external Program Advisory Committee
- Instrument dual-phase detector cart with Y-tagging detectors and a new DAQ
- Two beam energies
 - 4.769 MeV
 - 9.503 MeV
- Three Y-tagging angles per energy
 - 30, 90, 150 degrees

